## Flowers and insects. XI.

## CHARLES ROBERTSON.

Stellaria media Sm. ${ }^{1}$ - "Nat. from Eu."-The plant was observed in bloom from March 14th to Oct. 25 th. It is not abundantly visited except in early spring, when the flowers form quite conspicuous patches. At this time frequent cross-pollination is inevitable. On seven days, March 25 th to April 29th, and Oct. I 5th, I observed the following visitors, all sucking:-
Hymenoptera-Apida: (1) Apis mellifica L. $̧$; (2) Ceratina dupla Say of; (3) Osmia lignaria Say to ; (4) Nomada bisignata Say of; (5) N. luteola Lep. of; Andrenida: (6) Panur-
 fillinoensis Rob. of; (9) A. flavo-clypeata Sm. oै; (IO) A. cressonii Rob. ல̛; ; (II) A. forbesii Rob.q; (12) Augochlora pura Say o, ab.; (13) Halictus lerouxii Lep. of; (I4) H. ligatus Say of (15) H. fasciatus Nyl.of; (I6) H. pilosus Sm. 9 ; (I7) H. gracilis Rob.of; (I8) H. confusus Sm. 8 年; (19) H. stultus Cr. 8; (20) Colletes inaequalis Say of; Chalcidide: (21) Smicra torvina Cr.; Ichneumonida: (22) Pimpla novita Cr. (determaned by Ashmead); Tenthredinida: (23) Dolerus arvensis
Diptera-Mycetophilida: (24) Sciara sp.; Syrphida: (25) Chilosia capillata Lw.; (26) Melanostoma obscurum Say; (27) Platychirus quadratus Say; (28) Syrphus ribesii L. ; (29) 5. americanus Wd.; (30) Mesograpta marginata Say; (31) Eristalis tenax L. ; (32) E. aeneus F.; (33) E. dimidiatus Wd. ; (34) Brachypalpus frontosus Lw.; (35) Syritta pipiens Will. Tachinida: (36) Gonia frontosa Say, ab.; (37) G. exul

[^0]Pollenia rudis F.; (40) Musca domestica L. ; (41, 42) Lucili spp.; (43) L. cornicina F. ; (44) Myospila meditabunda F.. Anthomyide: (45) Chortophila sp.; Cordylurida: (46) Satophaga squalida Mg .

Lepidoptera-Nymphalida: (47) Pyrameis huntera F.; Lycaenida: (48) Lycaena pseudargiolus B.-L.

Hemiptera-Lygaeida: (49) Lygaeus turcicus F.

|  | Bees. | Other Hymenoptera | Diptera | Other insects. | Toul |
| :---: | :---: | :---: | :---: | :---: | :---: |
| In Low Germany-Müller. | 15 | I | 8 | I | 25 |
| In Illinois. | 20 | 3 | 23 | 3 | 4 |

Malva rotundifolia L. ${ }^{2}$ - '"Nat. from Eu."-In the Fertilization of Flowers Müller says that the flowers of this species attract few insects, and he gives a list of vistion which compares very unfavorably with the list taken on flowess of $M$. sylvestris. In Illinois the plant seems to have little difficulty in acquiring a useful set of visitors. The subjoined list compares favorably with Müller's list of visitors of sylvestris. The plant blooms from April to November. On eleven days, between May I4th and October gth, the following insects were observed visiting the flowers:-

Hymenoptera-Apidae: (I) Apis mellifica L. ð, s., freqi) (2) Bombus pennsylvanicus DeG. ㅇ, s.; (3) Melissodes bimeculata Lep. $\widehat{\text { on }}$, s. ; (4) Ceratina dupla Say $\uparrow$, s. and c. p. ; $;$ Nomada incerta Cr. $\uparrow$, s. ; (6) Calliopsis andreniformis Sm. 5 b s. and c. p., ab. ; Andrenidae: (7) Agapostemon bicolor Rob Bof, s. and c. p.; (8) A. radiatus Say of, s., freq.; (9) Argochlora pura Say 6 오, s. ; (IO) Halictus pectoralis 5 mi. 6 s. ; (II) H. similis Sm ㅇ, s. and c. p. ; (I2) H. coriaceus 5 m of, s. ; (13) H. ligatus Say bop, s.; (14) H. fasciatus Nyl.h. c p., freq. ; ( 15 ) H. pilosus Sm.of, s.; (16) H. zephyrus Smb s., (i7) H. confusus Sm. ofo $^{2}$, s., ab.; (I8) H. illinoensis Rob


[^1]Diptera-Syrphidae: (21) Mesograpta marginata Say, s. and 1. p.; Muscidae: (22) Lucilia cornicina F., s.; Anthomyidae: (23) Chortophila sp., s., freq.

Lepidoptera-Rhopalocera: (24) Pieris rapæ L., s.
Coleoptera-Malachidae: (25) Collops 4-maculatus F., f.p.

|  | Halictus. | Other bees. | Other insects. | Total. |
| :---: | :---: | :---: | :---: | :---: |
| In the Pyrenes-MacLeod. | - | 1 | - | 1 |
| Ls Low Germany-Müller. | 2 | 3 | 1 | 6 |
| In Illinois, | 13 | 7 | 5 | 25 |

StDA SPINOSA L. - "Nat. from the tropics."-The stigmas receive pollen from the dehiscent anthers, but may be effectvally dusted with pollen from other flowers in case of early insect visits. Later the styles bend and turn the stigmas in among the anthers, so that thorough self-pollination is insured. The plant has small yellow flowers. It was noted in bloom from July 25 th to October 3d, and the following visitors were observed:-
Hymenoptera-Apida: (I) Bombus americanorum F. $\bar{\delta}$ 5; (2) Ceratina dupla Say i, s. and c. p.; Andrenida: (3) Augochlora pura Say t, s.
Lepidoptera-Papilionide: (4) Pieris protodice B.-L.; (5)
P. rapæ L. ; (6) Colias philodice Gdt.; (7) Terias lisa B.-L.; Hesporide: (8) Pyrgus tassellata Scud.
Abutilon Avicennee Gærtn.-"Adv. from India." The flowers are yellow and occupy very inconspicuous positions under the large leaves. They are spontaneously selfpollinated in absence of insects, but may be cross-pollinated in their presence. For a long time I thought that nectar was wanting and that visitors never occurred, but in three days, August 21st to September 19th, I captured the following inlects on the flowers:-
Hymenoptera-Apida: (1) Apis mellifica L. ४े, s.; (2) BomMas separatus Cr. ४̧, s.; (3) B. americanorum F. ̧̧̧ơ, s.; (4) Melissodes bimaculata Lep. ㅇ, s. and c. p.; Andrenida: (5) Halictus confusus Sm. o., c. p.; (6) H. fasciatus Nyl. of, s.; (7) H. coriaceus Sm. \&, s. Diptera-Syrphida: (8) Mesograpta marginata Say, f. p.; Authomyida: (9) Chortophila sp., s.

Lepidoptera-Papilionidae: (Io)Pieris rapæ L.; Hesperids: (II) Pholisora catullus F.

Hibiscus lasiocarpus Cav.-With the exception of a single specimen of Hibiscus militaris, this is the only indgenous species of Malvaceæ which I have found in my neigbborhood, and, as might have been expected, is the only one in which spontaneous self-pollination is impossible. It groms in swamps. The stalks, several of which form a cluster, tie from one to two metres, each stalk exposing two or three large flowers at a time.

The flowers are white or rose-tinted, with a crimson centre. They measure from eight to ten centimetres in length, and expand from nine to eleven centimetres, or more. The lomet petals are directed horizontally; the upper are bent strongft upward like a vexillum, so as to be nearly perpendicular to the lower. The column lies near the lower petals and for about three centimetres from its base is provided with free filaments, which project upwards and sideways. On account of the flower being in an incipient stage of irregularity, the column still retains some useless filaments on the lower side whose anthers seldom touch the bees. The five large capt tate stigmas, which form a circle from nine to thirteen mill metres across, are advanced one or two centimetres before the nearest anthers, so that there is no chance of spontancoss self-pollination.

When visiting the flower, bees land upon the base of the column. The latter is bent upwards in such a position tht the bees touch the stigmas before they alight. After sucking the bees crawl out over the filaments and upon the lonet petals and leave the flower without again touching the stg. mas.

After alighting upon the column, Emphor bombifontide which is the characteristic visitor, turns to the right or lat and thrusts its proboscis into one nectary after another until it reaches the narrow interval between the column and the lower petals. Then it often turns back and inserts its $p^{\text {po }}$ boscis into the nectary on the other side. Commonly, biver ever, it fails to squeeze under the column to visit the nectar) which lies there, and it often neglects to turn back for to nectary on the other side, and so leaves the flower withot extracting the sweets from all the nectaries. Sevent- ${ }^{-18}$ individuals which I watched at this work missed eighty
nectaries in seventy-six flowers. On the other hand, Bombus americanorum, which is larger, more time-saving and less familiar with the flower, more frequently neglects to visit the nectary under the column and seldom turns back, so that it misses the lower nectaries even more frequently. I saw fiftysix individuals of this species miss eighty-five nectaries in fity-six flowers. Both species also often miss the lower nectaries because, after inserting their proboscides into the upper ones and finding them empty, they arrive at the erroneous conclusion that the lower ones are in the same condition.
In their economy, the flowers of this plant and the bee first mentioned, Emphor bombiformis, stand in a very close relation. With the exception of single individuals taken on flowers of Cephalanthus occidentalis and Ipomoxa pandurata, I have never takent this bee on any other flower. On the Hibiscus I have never failed to find it in favorable weather, and I have found the males in the closed flowers in bad weather. No specimens have been observed by me except during the blooming time of the plant, from July 25 th to Sept. I6th. The female is provided with a large loose scopa which seems to be specially fitted to retain the large pollen grains, and this is the only flower on which I have seen it collecting pollen. Accordingly, I think the bee depends exclusively upon Hibiscus pollen for food for its larvae. I have seen the female making excavations for her nest within a few yards of the plants.
The only other insect at all frequent on the flower is Bombus americanorum F . of 우. I have never found this bee half ${ }^{2 s}$ abundant, and commonly absent altogether, while the Emphor was abundant. This bumble-bee never collects the pollen. In addition to these insects I have seen the flowers visited for honey only by Melissodes bimaculata Lep. कि $\%$ and by single individuals of Bombus separatus Cr. \&. Entechnia ${ }_{\mathrm{F}}$ tarea Say 8, Megachile brevis Say fo, Euphoria sepulchralis F. and Trochilus colubris L. Hibiscus Trionum L. ${ }^{3}$ L.
fitte stigmas Trionum L. ${ }^{3}$ - "Adv. from Eur."- The five capthe edges ntand close together, and pollen only touches mas are thus free the dehiscent anthers. Most of the stigpollinated in free from pollen and can be effectually crossthe styles in case of insect visits. After the flowers close, the stigmas

[^2]among the anthers so as to cover them with pollen. Thorougi self-pollination is, therefore, only effected by a special move ment of the stigmas, and only occurs after the flower has been exposed to insects. I have seen it visited only by a single individual of Pieris rapa L.

Geranium Carolinianum L.-The plant is common, blooming from May 23d to July 13th. The stem rises from 2 to $4^{\mathrm{dm}}$, is diffusely branched and bears numerous pale rose colored flowers, which are not crowded so as to form an at. tractive combination.

The corolla is small, measuring about $7^{\mathrm{mm}}$ across. In forms observed by me there are ten perfect stamens. The flowers are imperfectly proterandrous. The anthers of the inner cir cle are so closely approximated to the stigmas, that in absence of insects, spontaneous self-pollination may readily occur.

The flowers are adapted to small bees. June roth 1 ob served the following visitors:

Hymenoptera-Apide: (I) Alcidamea producta Cr. 8 R, s, freq. ; (2) Osmia conjuncta Cr . ( $=4$-dentata Cr . b) of, s.i. (3 Calliopsis parvus Rob. \&, s. and c. p.; Andrenida: (4) Agrpostemon radiatus Say of, s.; (5) Augochlora pura Say \&, 5 and c. p., freq. ; (6) Halictus pectoralis Sm. o, s. and c. $P$ freq.; (7) H. tegularis Rob. o, s. and c. p.; (8) H. stulted Cr. of, c. p.; (9) Prosopis affinis Sm. .t, s., freq.; Eummide: (io) Odynerus sp., s., freq.

Diptera-Syrphida: (I I) Mesograpta marginata Say, s. freq.; Tachinida: (12) Hyalomyia purpurascens Twns. s, one

Oxalis violacea L. ${ }^{4}$ - The scapes rise one decimetre, of more, high añd expose an umbel of rose-purple flowers. Tot five petals expand $20^{\mathrm{mm}}$. At base they are approximated into a tube about $5^{\text {mm }}$ long, very wide in the throat, but ofstructed by the ten stamens and five styles. The tube within is whitish, with greenish streaks proceeding from a greenis base. The calyx is about $4^{\mathrm{mm}}$ long and is erect, aiding ingir ing firmness to the tube. In the long-styled form, spontlneous self-pollination is impossible, but in the short-stle form it may occur by the pollen falling upon the stigmas

The plant is common and blooms from April 6th to Jate 10th. It is very abundantly visited by bees, mostly speciep

[^3]of small size. On eight days, between May ist and I7th, I observed the following visitors:-

Hymenoptera-Apida: (1) Apis mellifica L. ఫ̛, s.; (2) Bombus americanorum F. ㅇ, s.; (3) B. pennsylvanicus DeG. Q. s.; (4) Synhalonia speciosa Cr. (=Melissodes dilecta Cr. 8 ) 8 i, s., freq. ; (5) Ceratina tejonensis Cr. $\begin{gathered}\text { s, s., (6) C. dupla Say }\end{gathered}$ 68, s., freq.; (7) Osmia cognata Cr. \&. s.; (8) O. albiventris Cr. \&. s. freq.; (9) Nomada superba Cr. of, s.; (10) N. annulata Sm . (=articulata Cr. nec Sm.) ô, s.; (II) N. sayi Rob. 8 \&, s., freq.; (12) N. cressonii Rob. o; Andrenida: (13) Andrena violæ Rob. ㅇ, s.; (14) A. ziziæ Rob. of, s.; (15) Agapostemon bicolor Rob. ㅇ, s.; (16) A. radiatus Say i, s.; (I7) Augochlora pura Say i, s., ab.; (18) Halictus pectoralis Sm. ㅇ, s.; (19) H. forbesii Rob. ㅇ, s.; (20) H. lerouxii Lep. of, s. and c. p., ab. ; (2I) H. ligatus Say \&, s.and c. p.; (22) H. fasciatus Nyl. ?, s. and c. p., ab.; (23) H. pilosus Sm. ㅇ, s. and c. p., ab.; (24) H. confusus Sm. of, s.; (25) H. albipennis Rob. ㅇ, s.

Lepidoptera-Rhopalocera: (26) Phyciodes tharos Dru.; (27) Colias philodice Gdt., (28) Nisoniades brizo B.-L.

Melilotus alba Lam.-"Adv. from Eur."-The plant is common along side-walks. The stems rise from 6 to $12^{\mathrm{dm}}$, or more, in height and bear a profusion of spikes crowded with white blossoms. The flower measures about $4^{\text {mim }}$ in length to the tip of the keel. The calyx tube measures about $I^{\text {mim }}$ in depth, so that the nectar is easily accessible to short-tongued insects. The flower agrees in all essentials, except color, with that of M. officinalis, as described and figured by Müller in Fertilization of Flowers, 180 . Müller saw M. alba visited by Apis mellifica L. ४, Macropis labiata Pz. and Empis luvida L .
The following were observed on June 23 d and 25 th:-Hymenoptera-Apida: (1) Apis mellifica L. چৃ, s., ab.; (2) Bombus separatus Cr. প, s. ; (3) Ceratina dupla Say $\stackrel{\text { P, s. and }}{ }$ ${ }^{\text {c p. ; ; (4) Megachile brevis Say of, s. and c. p.; (5) Alcidamea }}$ producta Cr. i, s. and c. p.; (6) Coelioxys 8-dentata Say $8 \uparrow$, and c. p.; Andrenide (9) Calliopsis andreniformis Sm. ${ }^{\text {if }}$, s . 68, 5. freq.; (II) Audrenida: (IO) Macropis steironematis Rob. Halictus freq.; (II) Augochlora similis Rob. o, s.; (12) Say \&, s.; (14) H. lerouxii Lep. and c. p.; (13) H. parallelus ligatus Say of, s. lerouxii Lep. $\delta 9$, s. and c. p. ; (15) H.
(17) H. albipennis Rob. if, s. and c. p. ; (I8) H. confusus $\mathrm{Sn}^{2}$ op, s. and c. p., ab.; (19) H. pruinosus Rob. ठ, s.; (20 Sphecodes arvensis Pttn. d, s.; (2I) Colletes eulophi Rob. 10 s.; (22) C. willistonii Rob. ㅇ, s. ; Vespida: (23) Polistes pulipes Lep., s. ; Eumenida: (24-26) Odynerus spp.; (27) Od. nerus fulvipes Sauss. ; (28) O. arvensis Sauss.; (29) 0, forme inatus Sauss., freq.; (30) O. megæra Lep.; Crabronide: (31) Crabro interruptus Lep., freq.; (32) Oxybelus emarber natus Say; Philanthide: (33) Cerceris clypeata Dlb.; Splow cide: (34) Ammophila gryphus Sm. ; (35) A. vulgaris Ctin (36) A. pictipennis Walsh.; (37) A. intercepta Lep.; (38) Isodontia philadelphica Lep.; (39) Sphex ichneumonea $L$. (40) S. pennsylvanica L.; (4I) Priononyx atrata Lep.; Pom pilida: (42) Pompilus sp.; (43) P. relativus Fox; (44) ?. navus Cr .

Diptera-Empida: (45) Empis sp.; Conopida: (46) 0 . comyia loraria Lw.; (47) Conops brachyrrhynchus Mcq.; 5\%. phida: (48) Platychirus quadratus Say; (49) Syrphus amertcanus Wd. ; (50) Allograpta obliqua Say; (51) Sphaerophorit cylindrica Say; (52) Syritta pipiens L.; Tachinida: ${ }^{6}$ (53) Cip togaster occidua Wlk.; (54) Ocyptera euchenor Wlk. frof (55) Jurinia apicifera Wlk.; (56) J. smaragdina Mcq; ; 57 Cuphocera ruficauda v. d. W.; (58) Micropalpus fulgens Mg ab.; (59) Phorocera edwardsii Will.; (60) Acroglossa hepper idarum Will., ab.; (6I) Trichophora echinomoides Tmns ab.; (62) Oliviera americana Twns.; (63) Pseudomyothyril nigricornis Twns.; Sarcophagida: (64-65) Sarcophaga ape Muscida: (66) Cyrtoneura sp.; (67) Lucilia caesar L.; (6) L. cornicina F. -all s.

Lepidoptera-Rhopalocera: (69) Chrysophanus thoe B.L (70) Thecla humuli Harr.; Sesiide: (71) Sesia sexfascith Hy. Edw.

Coleoptera-Scarabaeida: (72) Trichius piger F., Cerambycidae: (73) Typocerus sinuatus Newm., s.; Mond lida: (74) Mordella marginata Melsh., s.; Curculionida:(75) Centrinus sp. ; (76) C. picumnus Hbst.; (77) C. scutells album Say, freq.

Hemiptera-Lygaeida: (78) Lygaeus turcicus F., s.; Po tatomida: (79) Podisus spinosus Dal., s., one.

Carlinville, Ills.

[^4]
[^0]:    Sot Axell: Om anordningarna för de Fanerogama Växternas Befruktning: Tabbock: British Wild Flowers in Relation to Insects; Mäxller: Fertilization of Flovers, and Weit. Beobachtungen; Henslow: Self-fertilization of Plants; Asuls of Botany : The Effects of Cross-fertilization on Inconspicuous Flowers, fice Acad. Sci. I; Meehan: Contributions to the Life Histories of Plants, III, Aitl Soc. bot. Phila., 1888; Battandier: Sur quelques cas d'heteromorphisme, Pro MacLeod: Urance, xxx; Ludwig: Botan. Ver. d. Provinz Brandenburg, Theren d Belgischen Flungen über die Befruchtung einiger phanerogamen Remtaiss d. Bestãubun Flora, Bot. Centralblatt, xxnir; Schulz: Beiträge zur a

[^1]:    ${ }^{2}$ See Sprengel: Das entdeckte Geheimniss; Lubbock: British Wild liorn in relation to Insects; Henslow: On the Self-fertilization of Plants-Tn Linn. Soc. II. I; On the fertilization of flowers by bees and otber Journ. Roy. Hort. Soc. London, vi; Müller: Fertilization ob Frouching Weit. Beobachtungen; MacLeod: Pyreneenbloemen en hare bevrucnum insecten; Keller: Proc. Acad. Nat. Sci. Phila., 1892, 452.

[^2]:    ${ }^{4}$ See Sprengel: Das entdeckte Geheimniss.

[^3]:    ${ }^{4}$ See Trelease: The Heterogony of Oxalis violacea, Am. Nat. xvis Ase American Geraniaceæ, Mem. Bost. Soc. Nat. Hist. iv; Trans. St. Science, v; Bot. Gaz. xII; Christy: Journ. of Bot. xxifl.

[^4]:    ${ }^{6}$ The Tachinidæ mentioned in this paper were determined by $\mathbb{M r}$ C.B Tyler Townsend.

